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ABSTRACT

As currently implemented, single-photon sources cannot be made to produce single photons with high proba-
bility, while simultaneously suppressing the probability of yielding two or more photons. Because of this, single
photon sources cannot really produce single photons on demand. We describe a multiplexed system that al-
lows the probabilities of producing one and more photons to be adjusted independently, enabling a much better
approximation of a source of single photons on demand. The scheme uses a heralded photon source based on
parametric downconversion, but by effectively breaking the trigger detector area into multiple regions, we are
able to extract more information about a heralded photon than is possible with a conventional arrangement.
This scheme allows photons to be produced along with a quantitative “certification” that they are single pho-
tons. Some of the single-photon certifications can be significantly better than what is possible with conventional
downconversion sources (using a unified trigger detector region), as well as being better than faint laser sources.
With such a source of more tightly certified single photons, it should be possible to improve the maximum secure
bit rate possible over a quantum cryptographic link. We present an analysis of the relative merits of this method
over the conventional arrangement.
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1. INTRODUCTION

The advent of photon-based quantum cryptography, communication and computation schemes1–10 is increasing
the need for light sources that produce individual photons. It is of particular importance that these single
photons be produced in as controlled a manner as possible, as unwanted additional photons can render quantum
cryptographic links insecure and degrade quantum computation efficiencies.11 The ultimate goal is to have
completely characterized single photons produced on demand. More specifically, it would be very useful to have
these photons created in response to an external trigger, or even to have them arrive repetitively at a fixed, but
selectable rate.

Single photons (or more precisely, approximations thereof) are now commonly created via the process of
parametric downconversion (PDC),8,12–16 although attenuated lasers and quantum-dots and other single quan-
tum site sources are also used.17–23 The PDC process employs a nonlinear optical crystal that allows individual
photons from a pump laser beam to be converted into pairs of highly correlated photons. Because PDC creates
photons in pairs, the detection of one photon indicates, or “heralds”, the existence of its twin, a significant
advantage over other methods (even aside from the potential to directly produce entangled states). In addition,
because the PDC process is governed by the constraints of phase matching, it is possible to know the output
trajectory, polarization, and wavelength of that heralded photon. While PDC has a long history as a “single
photon source” and there have been many recent improvements in efficiency,24 the scheme has a couple of prob-
lems. The conversion process is random, so while an output photon is heralded by its twin, there is no control
or prior knowledge of when the heralding event will occur. In addition, there is a possibility of producing more
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than one pair at a time and because that probability increases nonlinearly with the one-photon probability, one
must operate at low one-photon probabilities. So to be assured that more than one photon is not produced, one
must operate where it is most likely that no photon is produced at all25!

The faint laser scheme suffers the same difficulty as the PDC method, in possibly producing more than one
photon at a time, with the added disadvantage of not having any herald at all.18 Quantum-dot sources offer
promise as a new way of definitively producing single photons, although it remains to be seen whether their
output/collection efficiencies can be made to approach unity in practice, a requirement for a true on-demand
source.

To surmount the problem of random production in PDC, one uses a pulsed laser to pump the nonlinear
crystal (see for instance20). With a pulsed source, photon pairs can only be produced at certain times ie.,
during the laser pulse. Unfortunately the multiple photon emission problem remains; a high probability (P (1))
of producing a single photon pair during each pulse leads to an increased likelihood (P (> 1)) of producing more
than one photon pair during each pulse, defeating the original goal of having a source of single photons. This
problem occurs regardless of whether sources with Poisson or Bose-Einstein statistics are used.16,26 Because of
this problem, pulsed systems also are usually operated with low probability of producing an output photon pair
during a laser pulse (typically P (1) ≈ 0.1 to 0.3).17,18,20 Thus, while photons can only come during specific time
windows, most of these time windows will contain no photons at all, illustrating the trade off between the two
requirements of producing a photon on demand and being assured that there is, in fact, just one photon.

The improvement presented here allows these two competing requirements to be adjusted independently by
decoupling P (1) and P (> 1). We can then select both the desired likelihood of production of a photon pair
and the desired suppression of multiple pair events. This is accomplished using an array of downconverters and
detectors (Fig. 1). All of the downconverters are pumped simultaneously by the same laser pulse. The pump
laser power is chosen so each downconverter has some small probability of producing a photon pair, while the
number of downconverters is chosen so there is a high likelihood of at least one pair being created somewhere in
the array. The detector associated with each downconverter allows us to determine which of the downconverters
has fired. This information is used to control an optical switching circuit directing the other photon of the
pair onto the single output channel. This arrangement allows a much truer approximation of a single photon
on-demand source than is possible with other methods.

The method imposes a number of requirements on the components used in a practical implementation. First,
a very fast optical switch is needed, because there must be an optical delay that provides enough time to throw
the appropriate switch before the photon arrives. Because light travels about 0.3 m/ns in air, a switching
transition time of 10 ns or better would enable a reasonably compact tabletop setup.27 Fortunately, there exist
electro-optic switches, such as those based on KDP and LiNbO3 that are capable of switching in just a few ns.
(The delay time between an electrical input trigger pulse and the optical switching transition should also be of
this order. This may be a more difficult, but not impossible, requirement to satisfy.) These are binary switches
(1 input – 2 outputs) that work by controlled rotation of the polarization of the light followed by a polarizing
beam splitter. Thus, to set up a circuit to take, for example, 8 input lines and allow one to be selectively switched
to the output line would require a circuit path 3 binary switches deep. Of course, the laser pulse duration must
be shorter than the timing resolution of the system. In addition to fast switch times, it is important that the
overall optical losses be low, so that there is a low probability of losing that heralded photon before it can exit
the apparatus; otherwise we would be back to the original problem of not being sure that we will get a photon.
The losses in a system built of discrete components would include absorptance and reflectance losses for each
component. All of the components that would be used in this system are existing devices that can be made with
low absorptance losses (< 0.01 %) and antireflection (AR) coatings (≈ 0.5 %). A typical system would consist
of a downconversion crystal (1 AR surface), a delay (0 or 2 AR surfaces and 0 or 2 mirror surfaces), and an
8-to-1 switch circuit (4 AR surfaces per 2-to-1 switch), so that the loss for a complete system would have less
than 15 AR coated surfaces with a total net loss less than 1-0.99515= 7.2 %, allowing conservatively a 92.8 %
probability of emitting the heralded photon. In addition to a single photon on demand system made of discrete
components, it is also of obvious interest to produce a system made of integrated components. While it is likely
that such a system would not achieve as low a loss as a discrete component arrangement, a useable system should
be possible, although an engineering effort would be needed to determine the ultimate limit.
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Figure 1. General schematic for single photon source showing array of crystal downconverters each with the potential of
producing a pair or pairs of photons. The each downconverter is shown with its own trigger detector. The information
about which trigger detectors have fired is sent to the optical switching circuit to control which incoming lines are directed
to the output line. Input line delays to allow the trigger information to arrive before the incoming photons are not shown.

A simple extension of this arrangement can produce a regularly spaced series of single photons. By ganging
up a series of these “single photon on demand setups” with additional optical switches and a series of optical
delays, it is possible to produce an arbitrary length train of single photons. A somewhat more efficient version
of this last scheme could be implemented by using the array of downconverters and detectors as a single large
pool of photon sources, instead of breaking them up into subgroups. In this arrangement, detectors that fire
indicate which of the many downconverters have produced photon pairs. This information is sent to a central
control circuit for the optical switches that then sequences the incoming single photons to produce the requested
output pulse train. By producing a pulse train long enough to last until the next pump laser pulse arrives, one
can create a continuous train of single-photon pulses synchronized with an external signal.

These basic concepts could be used to produce higher order photon number states as well. By using detectors
with the capability of sensing the number of photons in a single pulse, the switching circuit could just as well
direct the outputs of those converters that produced multiple photon pairs to the output channel. That would
result in an output pulse train with each pulse containing the desired number of photons.

2. PRACTICAL IMPLEMENTATION

While the scheme just described is conceptually the simplest way of presenting the method, there are a number
of modifications that can improve the efficiency, construction, and convenience of the system. The first of these
is that the array of downconverters can be implemented with a single PDC crystal. This is possible because
while phasematching requires a PDC photon pair to be constrained to a plane containing the pump beam, the
azimuthal angle of that plane is not constrained. Thus, the PDC process produces light distributed azimuthally
around the pump laser direction (for type I phasematching). So, each azimuthal plane can be thought of as a
separate downconverter. Thus the multiple PDC setup is achieved by placing many detectors azimuthally in an
annular pattern around the pump direction of a single downconverter and collecting at the correlated positions
(Fig. 2a).
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Figure 2. a.) Single crystal implementation of scheme. b.) Single detector implementation of scheme. Sequential series
of delay lines is seen leading to the trigger detector. c.) Implementation without the optical switching circuit. A lens is
used to collect all the modes correlated to those seen by the trigger.

A second modification allows the array of detectors to be replaced by a single detector. By sending each
of the potential herald photons to an increasing sequence of delays and then directing the delay outputs to a
single detector, the timing of the detector pulse indicates which of the input downconverters has created a pair
(Fig. 2b). Of course, several of the downconverters may produce a photon pair, but only the first photon herald
reaching the detector and causing it to fire is recorded. Detector deadtime causes subsequent photons to be
ignored. The timing of the detector pulse is used to select which correlated photon channel to direct to the
output of system.

A third implementation (Fig. 2c) even eliminates the output switching network circuit, while still maintaining
a significant advantage over both the conventional PDC and faint laser photon sources. The output photons
are simply collected with a single lens output port. This most basic implementation allows production of pulses
with individual certainties of that pulse containing exactly one photon. In other words, this source provides
single photons and a “certificate” tied to each output photon quantifying the likelihood that just one photon
was emitted. Some of these pulses can achieve a significantly higher single photon certainty than is possible
with the conventional single photon source setups. This more complete characterization of the emitted pulse
and its tighter constraints on P (> 1), will allow more efficient use of the emitted light. This reduces the need
for overhead tasks such as privacy amplification.28

The basic reason that this arrangement can produce single photons with lower probability of multiple photons
is that the delay system provides extra information about the photons produced. For instance, in the cases where
one of the longer delays happened to cause the detector to fire, we know that all the prior delays did not cause



the detector to fire. If the detection quantum efficiency is high, it is very likely that there were no photons in
those modes coupled to those shorter paths. Thus P (> 1) is greatly reduced because it is just the multiphoton
probability for only the last delay, rather than for all ND of them, which has a mean photon number of n vs.
n/ND.

3. ANALYSIS
We now quantify the advantage of this last and simplest scheme. We will see this scheme results in production
of photon pulses where each pulse has its own individualized single photon certification, and as expected, these
certifications can be significantly better than the uniform result obtained from the conventional arrangement.
To begin, we consider the standard PDC setup for producing heralded single photons. The trigger detector
registers one photon of a pair and indicates the existence of the second photon exiting the correlated channel.
The collection optics for that correlated channel are designed to collect, as close as can be approximated, just
the photons correlated to those seen by the trigger detector. In this arrangement, both the trigger channel and
output channel are set up to collect only one mode of the field.29 When the trigger detector fires, one photon
has been received (assuming negligible dark counts), but we do not know if additional photons were also present
as the considered detectors cannot distinguish a one-photon from a multi-photon event. Given that the trigger
detector has fired, the probability that there were n photons incident is:

PF
n,η(n) =

(1 − (1 − η)n) × Pn(n)∑∞
i=0(1 − (1 − η)i) × Pn(n)

, (1)

Note that 1 − (1 − η)n is the probability of the detector firing for n photons incident and detector quantum
efficiency, η defined as the probability of the detector firing when just one photon is incident. We use Bose-
Einstein statistics for the probability, Pn(n) = nn

(1+n)n+1 , of having n photons emitted into a single mode of the
PDC light, given n.16,26 The denominator of Eq. (1) normalizes the distribution. Note that it does not matter
whether the summation includes i=0 or not, as the probability of firing is zero if no photons are incident. We
will also need the probability that there were one or more photons incident if the detector did not fire. This
function is given by slight modifications of Eq. (1),

PF
n,η =

∑∞
k=1(1 − η)k × Pn(k)∑∞
k=0(1 − η)k × Pn(k)

, (2)

where (1−η)k is the probability of the detector not firing if k photons are incident and the numerator is the sum
over all the ways for the detector to not fire when photons are incident. In the denominator, which is the total
probability of not firing, we now include k=0 , because that term represents a legitimate way for the detector not
fire. With this basis, we now describe a system with a number of delay lines of increasing length placed between
the PDC crystal and the trigger detector. Each of these delay line channels intercepts a single, but separate,
mode of the field. The output channel collection optic is also modified to include the extra modes correlated to
those of the additional trigger modes. Each of these trigger paths has a chance to cause the trigger detector to
fire, with the shortest path providing the first chance, and the next longer path providing the next chance, and
so on. But once the trigger detector fires due to a photon in a particular path, it cannot fire due to subsequent
photons in the longer delay paths. The timing of the trigger detector firing relative to the pump pulse tells which
delay path caused the firing. Thus the result of a single pulse of the pump laser is that either no trigger was
produced or a trigger was produced and we know which delay path produced it. This last piece of information
allows us to make a better determination of the probability that the photon produced was a single photon. If
the photon that causes the trigger to fire is one of the later delay paths, we will have a much lower likelihood of
there being more than one photon. We now calculate this likelihood as a function of which delay path caused
the firing.

Suppose we have a system of ND delay paths and we have determined that the ith delay path caused the firing.
We then obviously know that all the previous delay paths did not cause the detector to fire, so the probability
that only one photon was incident into the entire system of delay paths is given by

Pn,η,ND(i) =
(

1 − PF
n

ND
,η

)i−1

PF
n

ND
,η

(1)
(
P n

ND
(0)

)ND−i

, (3)



where PF
n

ND
,η

is the probability that photons were incident if the detector did not fire. The first factor is the

probability that all delays prior to the ith delay did not fire due there being no photons in those paths. The
second factor is the probability that the ith delay that caused the firing contained exactly one photon. The
last term is the probability that all the subsequent delay paths contained no photons. Note that n is the mean
photon rate for the overall system, so the rate for a single mode is n

ND
. Then we use Eq. (1) with n=1 for a

Bose-Einstein distribution in each of the modes collected of Fig. 2c.

We need to calculate not only the probability of a single photon when delay i causes the trigger to fire, but
also the likelihood of that event occurring. This calculation is needed to verify that while a particular result may
give a high probability of being a single photon, the probability of having that result is not impractically small.
This probability of a particular delay causing the trigger to fire is given by

Pi =

( ∞∑
n=0

(1 − η)nP n
ND

(n)

)i−1

×
(

1 −
∞∑

n=0

(1 − η)nP n
ND

(n)

)
, (4)

Here the first factor is the probability of that all the paths prior to ith delay did not fire and the second factor
is the probability that the ith delay did fire (written as 1 minus the probability that the ith delay did not fire).
Also, we must include the possibility that no photon was detected via any delay path, i.e. that the trigger did
not fire at all. The likelihood of this occurring is given by

P0 =

( ∞∑
n=0

(1 − η)nP n
ND

(n)

)ND

, (5)

We can now substitute the Bose-Einstein distribution P n
ND

(n) into the above equations and simplify. Eq. (3)

becomes

Pn,η,ND(i) =
(

ND

n + ND

)i−1+ND

×
(

ND + ηn

n + ND

)i

, (6)

and the probability of a particular delay causing the trigger to fire becomes

Pi =
ηn

ND

(
ND

ηn + ND

)i

, (7)

while

P0 =
(

ND

ηn + ND

)ND

. (8)

Figure (3a) shows the functional form of these probabilities (of Eq. (6)), where each line of the fan shaped
family of curves represents a system of ND delays. (Figure 3b showing the probability of a single delay event
occuring is discussed later.) Each point on a given line corresponds to the trigger firing at a particular ith

delay out of a set of ND. The point’s value is the “single photon certification” - the probability that this event
indicates that exactly one photon pair exists in the system (one photon in the trigger channel and one in the
output channel). It can be seen that for ND of more than a few, and with high η, we can have emission events
with single photon probabilities around 90%, greatly exceeding the conventional arrangement results for the
same η and n. The conventional result is represented by the single ND =1 point (i.e. the standard PDC setup
with one trigger path).

We have calculated two additional probabilities: the overall probability of producing a single photon (Eq. (9)),
and that same probability given that the trigger did fire (Eq. (10)). The first is obtained by taking the product
of the probability of a particular delay event being due to a single photon and the probability of that event
occurring, and then summing over all possible types of events (i=1,2,... ND). Added to this is the probability
for the case where no delays fire (so no heralding is present), but there is still a single photon (undetected) in
one delay line:

Pn(1, η, ND) =
ND∑
i=1

Pn,η,ND(i) × Pi + ND(P n
ND

(0))ND−1(1 − η)P n
ND

(1). (9)
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Figure 3. a) Plot of single photon “certifications,” Pn,η,ND(i) as a function of the ith delay firing. The fan of curves
labeled 1-8 are the probabilities of exactly one photon being produced given that the ith delay, in a system of ND, caused
the trigger to fire for η,n=1. The lowest curve is the total probability for a system of ND delays to produce a single photon
per pump pulse with the Poisson limit shown just above. The dashed curve above the Poisson limit is the probability
that the emitted light is a single photon given that the trigger did fire. (For these last 3 curves, the x-axis is ND rather
than triggered delay.) b) Probability of that the ith delay will cause the trigger to fire.

The second probability is obtained by eliminating the case where the trigger did not fire and renormalizing:

Pn(1, η, ND|trigger) =
∑ND

i=1 Pn,η,ND(i) × Pi

1 − P0
. (10)

Via some algebra we obtain:

Pn(1, ND) = n ×
(

ND

n + ND

)1+ND

(11)

and

Pn(1, η,ND|trigger) =
nη

(
ND

n+ND

)1+ND

1 −
(

ND
nη+ND

)ND
(12)

for a Bose-Einstein distribution in each of the modes collected in Fig. 2c. These two results are also shown on
Fig 3a for η=1. (Note, P is independent of η in Eq. (11), a reflection of the fact that it does not involve the
herald, or trigger, detector.) For these curves, the abscissa is ND rather than delay i.

It is also instructive to calculate the probabilities in Eqs. (9) and (10) assuming the heralded photons follow
a Poisson, rather than Bose-Einstein, distribution in each mode. Then Eq. (9) simply returns the Poisson
probability of exactly one photon (the Poisson limit):

Pn(1) = n e−n, (13)

while Eq. (10) becomes:

Pn(1, η|trigger) =
nηe−n

1 − e−nη
. (14)

These are independent of ND, as one would expect, because a collection of Poisson subsystems taken together
yields a result with Poisson statistics for the entire system.
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For large ND, the probabilities of Eqs. (11) and (12), calculated for a thermal source, approach the results that
would be obtained for Poisson-distributed photons as given by Eqs. (13) and (14). In particular, the unheralded
single-photon probability Pn(1, ND) asymptotically approaches the Poisson limit of Eq. (13) for ND → ∞, as seen
in Fig. 3a. This tending of a collection of many single-mode Bose-Einstein subsystems toward the Poisson result is
also expected, in that the more independent subsystems are included in the sum, the more the individual events
in the system are independent of each other, which is the definition of Poisson statistics. The higher values
of Pn(1, η,ND|trigger) seen in Fig. 3a indicate the advantage of heralded Bose-Einstein-distributed photons
over those from a faint laser, whose single-photon probability is given by the Poisson limit. An even bigger
advantage would occur if it were possible to have heralded, Poisson-distributed photons: the above analysis
yields qualitatively the same shaped curves for the single-photon certifications Pn,η,ND(i) as in Fig. 3a, but with
even higher probability values in that case.

As previously mentioned, we must also verify that the events with high single photon probabilities or “certi-
fications” have reasonable likelihoods of occurring. Fig. 3b shows the probabilities of occurrence for each type of
event shown in Fig. 3a. (For comparison we have included the probability of the trigger detector not firing due
to any of the delay channels. These are the points plotted at delay=0.) While the likelihood of the later delay
events occurring is lower than the earlier delay events, the dependence is not particularly strong. For instance
in the ND=8, n=1 case the falloff from delay-1 events to delay-8 events is only a factor of about 2.

Figure 4 is a matrix of graphs similar to Fig. 3a for a range of values of n and η. Looking from left to right,
we see that as η approaches unity, we achieve the best single photon certifications. This is because a high η
means that the system will provide more complete information about what has happened. For example with
a high η, an instance of the trigger not firing means with high certainty that no photon was incident, while a
low η decreases our certainty of that event. Highlighting the advantage of this method, fig. 4 also shows that
in almost all cases, the multiplexed heralded system presented in this paper significantly surpasses the single
photon probability of a faint laser as described by the Poisson limit. For each value of n this limit is indicated
on the figure by the level of the asymptote to the Pn(1, ND) curve.

Figure 4 also shows that increasing n, increases the spread of the certifications, while decreasing the maximum
single photon certification possible. So we can see that there is a trade off between having high certainty single
photons and overall single photon rate. In fact, Pn(1, ND) does not continue increasing with increasing n. This
is clearly seen in Fig. 5, which shows Pn(1, ND) for systems with varying ND, as a function of the mean overall
rate of photon generation per pulse. The maximum occurs for all systems at n=1. This is the balancing point
between a low photon rate that reduces the number of single photon events and a high photon rate that increases
the number of multiple photon events. This tells us the best rate to operate the system to maximize single photon
events, although it will not necessarily provide the highest single photon certainties. But we can still achieve
higher single photon certifications than is possible conventionally, while maximizing single photon rates.

For comparision of the pulsed “single photon” systems using a faint laser, conventional PDC source, and our
multiplexed PDC source, we calculate the overall single photon production probability. For a faint laser, the
maximum possible fraction of single photon events is 37%. For a conventional PDC source, the single-photon
fraction is limited to only 25% because the Bose-Einstein statistics encourage bunched photons; however because
the PDC source provides a herald, the no-photon emission event can be eliminated bringing the single photon
fraction up to 50%. Then, using the full multiplexed PDC setup presented here, fractions much closer to 100%
can be achieved, while even the simplest multiplexed version of Fig. 2c allows a single photon fraction of 57%
(for the case ND = 8, n=1, η=1).

4. CONCLUSION

We have shown a way to decouple the probabilities of producing a single photon and the probability of producing
more than one photon, using an array of parametric downconverters. By doing so, we can construct a better
approximation of a true single photon on-demand source than is possible using a conventional single PDC setup
or a faint laser source.11,16 In principle this method could achieve an arbitrarily close approximation of a single
photon on demand source. We have also analyzed a version that, while greatly simplifying the construction of an
actual device, retains a significant amount of the benefit of the original concept. The setup would produce single
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photons with individual certifications that the photons produced are actually the desired single photons. Such
a better-defined single photon source will allow for better use of quantum channel resources in a cryptographic
system by reducing the need for overhead tasks such as privacy amplification, as well as having implications for
the field of quantum computation. As photon counting becomes more convenient at telecom wavelengths, we
expect that integrated all solid state implementations of these schemes will be made even easier, and we will
have truly achieved the dream of a convenient source of single photons on demand. We are currently working on
experimental implementations.

REFERENCES
1. C. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” in Pro-

ceedings of the IEEE International Conference on Computers, Systems and Signal Processing, p. 175, 1984.
2. C. Bennett and G. Brassard, “Quantum public key distribution system,” IBM Technical Disclosure Bulletin

28, p. 3153, 1985.
3. C. Bennett and G. Brassard, “The dawn of a new era for quantum cryptography: The experimental prototype

is working!,” SIGACT NEWS 20, p. 78, 1989.
4. C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, “Experimental quantum cryptography,”

Lecture Notes in Computer Science 473, pp. 253–265, 1991.
5. A. Ekert, “Quantum cryptography based on Bell’s Theorem ,” Phys. Rev. Lett. 67, pp. 661–663, 1991.
6. C. Bennett, “Quantum cryptography using any two nonorthogonal states,” Phys. Rev. Lett. 68, pp. 3121–

3124, 1992.
7. C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without bell theorem,” Physical

Review Letters 68(5), pp. 557–559, 1992.
8. A. K. Ekert, J. G. Rarity, P. R. Tapster, and G. M. Palma, “Practical quantum cryptography based on

2-photon interferometry,” Physical Review Letters 69(9), pp. 1293–1295, 1992.
9. W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Quantum cryptography using entangled photons in

energy-time bell states,” Physical Review Letters 84(20), pp. 4737–4740, 2000.
10. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,”

Nature 409, pp. 46–52, 2001.



11. G. Brassard, N. Lutkenhaus, T. Mor, and B. C. Sanders, “Limitations on practical quantum cryptography,”
Physical Review Letters 85(6), pp. 1330–1333, 2000.

12. D. C. Burnham and D. L. Weinberg, “Observation of simultaneity in parametric production of optical
photon pairs,” Phys. Rev. Lett. 25, pp. 84–87, 1970.

13. A. Sergienko, M. Atature, Z. Walton, G. Jaeger, B. Saleh, and M. Teich, “Quantum cryptography using
femtosecond-pulsed parametric down-conversion,” Phys. Rev. A 60, pp. R2622–R2625, 1999.

14. T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, “Quantum cryptography with entangled
photons,” Physical Review Letters 84(20), pp. 4729–4732, 2000.

15. D. S. Naik, C. G. Peterson, A. G. White, A. J. Berglund, and P. G. Kwiat, “Entangled state quantum
cryptography: Eavesdropping on the ekert protocol,” Physical Review Letters 84(20), pp. 4733–4736, 2000.

16. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” iv:quant-ph/0101098v1 , p. 13,
2001.

17. B. C. Jacobs and J. D. Franson, “Quantum cryptography in free space,” Optics Letters 21(22), pp. 1854–
1856, 1996.

18. W. T. Buttler, R. J. Hughes, P. G. Kwiat, S. K. Lamoreaux, G. G. Luther, G. L. Morgan, J. E. Nordholt,
C. G. Peterson, and C. M. Simmons, “Practical free-space quantum key distribution over 1 km,” Physical
Review Letters 81(15), pp. 3283–3286, 1998.

19. J. Kim, O. Benson, H. Kan, and Y. Yamamoto, “A single-photon turnstile device,” Nature 397, pp. 500–503,
1999.

20. W. T. Buttler, R. J. Hughes, S. K. Lamoreaux, G. L. Morgan, J. E. Nordholt, and C. G. Peterson, “Daylight
quantum key distribution over 1.6 km,” Physical Review Letters 84(24), pp. 5652–5655, 2000.

21. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. D. Zhang, E. Hu, and A. Imamoglu,
“A quantum dot single-photon turnstile device,” Science 290, pp. 2282–2285, 2000.

22. P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation
among photons from a single quantum dot at room temperature,” Nature 406, pp. 968–970, 2000.

23. W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Quantum cryptography using entangled photons in
energy-time bell states,” Physical Review Letters 84(20), pp. 4737–4740, 2000.

24. P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultra-bright source of polarization-
entangled photons,” Phys. Rev. A 60, pp. R773–R776, 1999.

25. M. Nielsen and I. Chuang, Quantum Computation and Quantum Information, Cambridge University Press
New York, 2000.

26. D. F. Walls and G. J. Milburn, Quantum Optics, Springer NewYork, 1995.
27. T. B. Pittman, B. C. Jacobs, and J. D. Franson, “Single photons on pseudo-demand from stored parametric

down-conversion,” quant-ph/0205103v1 , 2002.
28. H. Inamori, N. Lutkenhaus, and D. Mayers, “Unconditional security of practical quantum key distribution,”

quant-ph/0107017 , 2001.
29. C. Kurtsiefer, M. Oberparleiter, and H. Weinfurter, “High-efficiency entangled photon pair collection in

type-ii parametric fluorescence,” Physical Review A  64 (2), art. no.–023802, 2001.


